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Abstract
We construct integrable cases of generalized classical and quantum Gaudin
spin chains in an external magnetic field. For this purpose, we generalize
the ‘shift of argument method’ onto the case of classical and quantum
integrable systems governed by an arbitrary g-valued, non-dynamical classical
r-matrix with spectral parameters. We consider several examples of the
obtained construction for the cases of skew-symmetric, ‘twisted’ non-skew-
symmetric and ‘anisotropic’ non-skew-symmetric classical r-matrices. We
show, in particular, that in a general case in order for the Gaudin system in
a magnetic field to be integrable, the corresponding magnetic field should be
non-homogeneous.

PACS numbers: 03.65.Fd, 02.30.Ik
Mathematics Subject Classification: 81R12, 37J35

1. Introduction

There are two large classes of integrable spin chains. One of them is the celebrated Heisenberg
spin chains (see review [1] and references therein) with the nearest-neighbors interaction.
Another is the Gaudin spin chains [2] with a long-range interaction between spins in the chain.
Known examples of the Gaudin spin chains are connected with skew-symmetric solutions of
the classical Yang–Baxter equations [2, 3, 4, 6]. All such solutions are known, classified [7]
and are exhausted by rational, trigonometric and elliptic solutions.

In our previous paper [8], we have constructed new integrable classical spin chains
starting from general non-skew symmetric solutions of the generalized classical Yang–Baxter
equations [9–11, 13, 14] with values in a semi-simple (reductive) Lie algebra g. In particular,
we have constructed the second order in spin variables classical Hamiltonians of these models
and showed that they are direct generalizations of the famous Gaudin Hamiltonians. In our
paper [17], we have proved quantum integrability of the constructed systems, showing by
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the direct calculation, that the corresponding ‘quantum’ analogs of our classical generalized
Gaudin Hamiltonians mutually commute. In the papers [17, 18], we have also constructed
new non-skew-symmetric classical r-matrices and explicitly obtained many new examples of
integrable quantum spin chains that generalize the Gaudin spin chains.

In the present paper, we investigate the problem of integrability of generalized quantum
Gaudin Hamiltonians with the external magnetic field. For this purpose we, at first, explore
the question of their classical integrability. We take into account that the Hamiltonians of the
spin chains in a magnetic field are non-homogeneous, namely they consist of two parts: the
quadratic in the spin variables part describing the interaction among the spins of the chain and
linear in spin variables part describing the interaction of the spins of the chain with an external
magnetic field. On the other hand, for classical one-top systems there exists the method that
permits one to construct non-homogeneous integrable Hamiltonians, namely the so-called
argument-shift method [19, 20]. In order to achieve our goal of constructing of classically
integrable spin chains in a magnetic field we generalize the ‘shift of the argument’ method
onto the case of an arbitrary r-matrix bracket and arbitrary Lax matrices possessing the such
bracket. In the particular case of the ‘many-poled’ Lax matrices L(u) with simple poles we
obtain, after the ‘generalized shift argument procedure’, the needed classical Hamiltonians
of the generalized Gaudin systems in an external magnetic field. The role of the ‘external’
magnetic field is played by some constant not depending on the dynamical variables element
c(λ) ∈ g(λ, λ−1)). We call it the ‘generalized shift element’. We show that in the case of the
standard skew-symmetric matrix of Yang it coincides with an arbitrary spectral-parameter-
independent element c ∈ g from the usual ‘argument-shift’ method.

In a general case, classical integrability does not automatically imply quantum integrability
due to the fact that commutativity of the classical integrals does not always imply the
commutativity of the quantum ones. Nevertheless, by a direct calculation we also prove
the commutativity of quantum analogs of the constructed classical Hamiltonians of the
generalized Gaudin systems in an external magnetic field for all classical non-skew-symmetric
non-dynamical r-matrices r(λ, µ) and all ‘shift elements’ c(λ). The quantum-commuting
Hamiltonians have the following explicit form:

Ĥ l
c =

dim g∑
α,β=1

N∑
k �=l

rαβ(νk, νl)Ŝ
k
αŜl

β +
1

2

dim g∑
α,β=1

r
αβ

0 (νl, νl)
(
Ŝl

αŜl
β + Ŝl

β Ŝl
α

)
+

dim g∑
α=1

cα(νl)Ŝ
l
α, (1)

where Ŝk
α are the α-components of the generalized spin operators living in the site k (k ∈ 1, N)

with the coordinate νk, r
αβ(λ, µ) are matrix elements of the r-matrix r(λ, µ) and r

αβ

0 (λ, µ)

are matrix elements of its regular part. It is necessary to note, that in a general case the
‘shift element’ c(λ) = ∑dim g

α=1 cα(λ)Xα , playing the role of the external magnetic field, is
λ-dependent and, hence, the external magnetic field is non-homogeneous.

In order to make our construction more concrete, in the present paper we explicitly
construct admissible shift elements for several classes of classical r-matrices and corresponding
Hamiltonians of spin chains in a magnetic field. In particular, we explicitly construct the
constant ‘shift elements’ for the classical skew-symmetric r-matrices r(λ − µ), ‘twisted’
non-skew-symmetric r-matrices rσ (λ, µ), where σ is an involutive automorphism [18] and
‘anisotropic’ non-skew-symmetric r-matrices rA(λ, µ) [8, 32].

The structure of the present paper is the following. In section 2, we consider the case
of classical integrable systems and introduce the ‘generalized argument shift method’. In
section 3, we consider the problem of a quantization of the obtained systems, prove
commutativity of the generalized quantum Gaudin Hamiltonians in an external magnetic
field and consider several classes of examples.
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2. Classical case

2.1. Classical integrable systems and classical r-matrices

In this subsection, we will remind several basic facts [8, 10, 11] about general classical
r-matrices with a spectral parameter and their relation to the theory of integrable systems.

We will use the following definition:

Definition 1. The function of two complex variables r(λ, µ) with values in the tensor square
of the algebra g is called a classical r-matrix if it satisfies the ‘generalized’ or ‘permuted’
classical Yang–Baxter equation [11, 13, 14, 16]:

[r12(λ, µ), r13(λ, ν)] = [r23(µ, ν), r12(λ, µ)] − [r32(ν, µ), r13(λ, ν)]. (2)

Let Xα, α = 1, dim g be some basis in g with the commutation relations

[Xα,Xβ ] =
dim g∑
γ=1

C
γ

αβXγ . (3)

Then the corresponding r-matrix may be written as follows: r(λ, µ) = ∑dim g

αβ=1 rαβ(λ, µ)Xα ⊗
Xβ .

Remark 1. If matrix r(λ, µ) is ‘skew-symmetric’, i.e. r12(λ, µ) = −r21(µ, λ) equation (2) is
reduced to the usual classical Yang–Baxter equation [7],

[r12(λ, µ), r13(λ, ν)] = [r23(µ, ν), r12(λ, µ) + r13(λ, ν)]. (4)

Due to the fact, that all solutions of the usual classical Yang–Baxter equation are skew [21]
each solutions of (4) is also a solution of (2). The classical Yang–Baxter equation (4) may be
obtained from the quantum Yang–Baxter equation [22–24]:

R12(λ, µ)R13(λ, ν)R23(µ, ν) = R23(µ, ν)R13(λ, ν)R12(λ, µ), (5)

after the ‘quasi-classical limit’: R12(λ, µ) = I + ηr12(λ, µ) + o(η), where η is an additional
parameter that label the solutions of (5). Note, that for general non-skew-symmetric r-matrices
r12(λ, µ) there is no analog of the quantum Yang–Baxter equation (5) and no quantum R-matrix
R12(λ, µ).

Remark 2. Note, that generalized classical Yang–Baxter equation possesses additional
symmetry in comparison with the ordinary one, namely if r12(λ, µ) is a solution of equation (2)
then r

f

12(λ, µ) = f (µ)r12(λ, µ) is also a solution of equation (2) for any scalar function f (µ).
We consider r-matrices r12(λ, µ) and r

f

12(λ, µ) to be equivalent.

Having the classical r-matrix r(λ, µ) one defines [11, 13, 14, 16] the following bracket:

{L1(λ), L2(µ)} = [r12(λ, µ), L1(λ)] − [r21(µ, λ), L2(µ)], (6)

where L1(λ) = L(λ) ⊗ 1, L2(µ) = 1 ⊗ L(µ) and L(λ) = ∑dim g

α=1 Lα(λ)Xα .
It is evident that the so-defined bracket is skew. The Jacobi condition for the bracket (6)

is provided by the fact, that r(λ, µ) satisfies (2). In a component form bracket (6) acquires the
following explicit form:

{Lα(λ), Lβ(µ)} =
dim g∑
γ,δ=1

(
cα
γ δr

γβ(λ, µ)Lδ(λ) − c
β

γ δr
γα(µ, λ)Lδ(µ)

)
. (7)
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The following proposition follows from the explicit form of the Poisson bracket
[11, 13, 14]:

Proposition 2.1. Let Ck(L), L ∈ g∗ be a Casimir function of order k of the algebra g. Then
the functions I k(λ) = Ck(L(λ)) are the generating functions of a commutative subalgebra in
the Lie algebra of functions with respect to the brackets (6):

{I k(λ), I l(µ)} = 0.

Remark 3. In the case of matrix Lie algebras g one may simply put Ck(L) ≡ T rLk .

Remark 4. The commutative integrals given by the generating functions I k(λ) can be written
more explicitly as follows:

I r,i
n = resλ=νi

(λ − νi)
nCr(L(λ)). (8)

In what follows we will make an important ‘regularity’ assumption about behavior of
the r(λ, µ) in a neighborhood of λ = νk, µ = νm. In more details, we will assume that in
the neighborhood of the points λ = νk, µ = νm, ∀k,m ∈ 1, N, k �= m the function r(λ, µ)

possesses the following decomposition:

r(λ, µ) = 	

(λ − µ)
+ r0(λ, µ), (9)

where r0(λ, µ) is a regular in a neighborhood of these points g⊗g-valued function, 	 ∈ g⊗g

is the tensor Casimir: 	 = ∑dim g

α,β=1 gα,βXα ⊗ Xβ, gα,β is a nondegenerate invariant metric
on g.

2.2. Classical r-matrices and ‘shift of the argument’ procedure

Let us describe how having Lax matrices that satisfy linear brackets (6) to obtain in the simple
way the other Lax matrices satisfying linear brackets (6) with the same r-matrix.

The following proposition holds true:

Proposition 2.2. Let L(λ) be the Lax matrix with the Poisson bracket (6) and c(λ) be a
constant (i.e. not depending on dynamical variables) solution of the equation

[r12(λ, µ), c1(λ)] − [r21(µ, λ), c2(µ)] = 0. (10)

Then the matrix Lc(λ) = L(λ) + c(λ) also has Poisson bracket (6).

Proof. It follows from the linearity of the bracket (6) and the fact that the g-valued function
of λc(λ) does not depend on dynamical variables and, hence

{L1(λ), c2(µ)} = {c1(λ), L2(µ)} = {c1(λ), c2(µ)} = 0.

From this and equality (10) we derive that
{
Lc

1(λ), L2
2(µ)

} = [
r12(λ, µ), Lc

1(λ)
] −[

r21(µ, λ), Lc
2(µ)

]
.

That proves the proposition. �

Remark 5. In the component form equality (10) is written as follows:

dim g∑
γ,δ=1

(
Cα

γδr
γβ(λ, µ)cδ(λ) − C

β

γδr
γα(µ, λ)cδ(µ)

) = 0. (11)
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It will also be convenient to have a differential analogue of the condition (10). The
following proposition holds true.

Proposition 2.3. Let the classical r-matrix satisfies regularity condition (9). Then the c-matrix
satisfying condition (10) as a function of λ satisfies the following differential equation:

[(r0)12(λ, λ), c1(λ)] − [(r0)21(λ, λ), c2(λ)] = [	12, ∂λc2(λ)], (12)

or in the component form
dim g∑
δ=1

c
βα

δ ∂λc
δ(λ) =

dim g∑
γ,δ=1

(
cα
γ δr

γβ

0 (λ, λ) − c
β

γ δr
γα

0 (λ, λ)
)
cδ(λ).

Definition 2. We will call the algebra-valued function c(λ) satisfying equations (10)–(12) ‘the
generalized shift element’.

In the following section, we will consider several examples of the generalized shift
elements for several classes of the skew-symmetric and non-skew-symmetric classical r-
matrices.

Let us pass to a description of the ‘generalized shift of the argument method’ itself.
Combining proposition 2.2 and proposition 2.1 we obtain the following proposition:

Proposition 2.4. Let Ck(L), L ∈ g∗ be a Casimir function of order k of the algebra g and
c(λ) be a constant solution of equation (10). Then the functions

I k
c (λ) = Ck(L(λ) + c(λ))

are generating functions of the commutative subalgebra in the Lie algebra of functions of L(λ)

with respect to the brackets (6).

This proposition generalizes onto the case of the arbitrary r-matrix the so-called shift of
the argument method [19]. In order to show this we will consider the following example:

Example 1. Let us consider the simplest classical rational r-matrix [7] of Yang,

r(λ, µ) = 	

(λ − µ)
. (13)

The simplest possible Lax operator corresponding to this Lax matrix has the following form:

L(λ) = 1

λ

dim g∑
α,β=1

gαβSαXβ.

In this case, r0(λ, µ) = 0 and equation (12) yields the condition ∂λc(λ) = 0, i.e. in this case a
shift element does not depend on λ. Hence, we obtain the following generators of the Abelian
with respect to the Lie–Poisson bracket on g∗ algebra:

I k
c (λ) = λ−kCk(L + λc),

where L ≡ λL(λ) and c ∈ g = g∗ is an arbitrary constant element. It is easy to see that (up to
the multiplier λ−k) these are exactly the generators of the Mishchenko–Fomenko algebra [19].

Remark 6. For the above example of the Mishchenko–Fomenko algebra there exists
a Lie-theoretical interpretation of the constant shift element based on a loop algebra in
‘homogeneous’ grading [15]. More generally, there exists a special generalization of
this construction [15], based on the loop algebras in other gradings (and classical r-
matrices associated with them [16]). There also exists a Lie-theoretical interpretation of
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the corresponding ‘shift elements’ c [15]. In the present paper, we will not develop Lie-
theoretical approach to the generalized shift elements c(λ) corresponding to the general
classical r-matrices r(λ, µ), showing that it is possible to find the shift elements with the
help of the r-matrix formalism only, using either differential equation (12) or some additional
symmetry conditions.

Now we will explain how the generalized shift elements are connected for the proportional
r-matrices. The following proposition is proved by the direct verification:

Proposition 2.5. Let c(λ) be the generalized shift element for the r-matrix r(λ, µ). Then
cf (λ) = f (λ)c(λ) is the generalized shift element for the r-matrix rf (λ, µ) = f (λ)r(λ, µ).

Remark 7. Note that in the case of the skew-symmetric classical r-matrices the ‘generalized
shift of the argument procedure’ is connected with a standard quantum-group technique [25].
Indeed, in this case condition (10) acquires the form

[r12(λ, µ), c1(λ) + c2(µ)] = 0.

Its analogue for the case of the quantum R-matrix is the condition [25]

[R12(λ, µ), C1(λ, η)C2(µ, η)] = 0,

where η is the additional parameter labeling solutions of QYBE such that R12(λ, µ) =
1 + ηr(λ, µ) + o(η). From this it follows, in particular that [r12(λ, µ), C1(λ, 0)C2(µ, 0)] = 0
and the matrices C(λ, η) and c(λ) are connected as follows: c(λ) = C(λ, 0)−1(∂ηC(λ, η))|η=0.
The quantum-group version of the ‘shift of the argument procedure’ is multiplicative
T (u) → C(u, η)T (u) [25] (see also remark 8).

2.3. Classical spin chains

Now let us pass to a consideration of the concrete physical model we are interested in, namely
for the generalized classical spin chains. For this purpose we will fix the concrete form of the
Lax matrix L(λ) satisfying tensorial brackets (6).

The following proposition holds true [8]:

Proposition 2.6. Let Sk
α be the coordinate functions on (g⊕N)∗ with a Lie–Poisson bracket:{

Sk
α, Sl

β

} = δklC
γ

α,βSk
γ . (14)

Then the Lax matrices of the following form:

L(λ) =
dim g∑
α=1

Lα(λ)Xα =
N∑

k=1

dim g∑
α,β=1

Sk
αrα,β(νk, λ)Xβ, (15)

satisfy tensorial brackets (6).

Let us show that Lax matrix (15) corresponds to the Gaudin-type classical spin system. For
this purpose we will obtain generalizations of the Gaudin Hamiltonians using the second-order
generating function I 2(L(λ)). The following proposition is true [8]:

Proposition 2.7. Let r(λ, µ) possesses the decomposition (9) in the neighborhood of the
points λ = νk, µ = νm, k �= m. Then the Hamiltonians Hk ≡ 1

2I
2,k
0 have the form

Hk =
N∑

m�=k

dim g∑
α,β=1

rα,β(νm, νk)S
m
α Sk

β +
dim g∑
α,β=1

r
α,β

0 (νk, νk)S
k
αSk

β. (16)
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The Hamiltonian Hk
c may be interpreted as an energy of the spinning particle living at

the site k that interact with the spins living at the other sites. The set of these Hamiltonians
for different k are generalizations of the well-known Gaudin Hamiltonians [2]. Indeed, in the
case of the skew-symmetric r-matrices r(λ, µ) we have that r

α,β

0 (νk, νk) = −r
βα

0 (νk, νk), the
second sum in formula (16) vanishes and Hamiltonians (16) are reduced to the usual classical
Gaudin Hamiltonians.

2.4. Classical spin chain in a magnetic field

Let us now pass to a consideration of the main example of the present paper, namely generalized
Gaudin systems in a magnetic field. Let us now obtain the corresponding Hamiltonians and
Lax matrix. For this purpose we will apply the ‘shift of the argument’ procedure described in
the previous subsection. The corresponding ‘shifted’ Lax matrix has the following form:

Lc(λ) = L(λ) + c(λ) =
dim g∑
β=1

Lβ
c (λ)Xβ =

N∑
k=1

dim g∑
α,β=1

Sk
αrα,β(νk, λ)Xβ +

dim g∑
α=1

cα(λ)Xα, (17)

where c(λ) =
dim g∑
α=1

cα(λ)Xα is the shift element for the corresponding r-matrix r(λ, µ).

Let us consider the corresponding second-order Hamiltonians of the classical spin chain
with the above general shift of the argument. The direct verification gives the following:

Proposition 2.8. Let the shift element c(λ) has no poles at the points of the chain λ = νk .
Then the Hamiltonians Hk

c ≡ 1
2I

2,k
0 (Lc(λ)) have the following explicit form:

Hk
c = Hk + hk =

⎛⎝ N∑
m�=k

dim g∑
α,β=1

rα,β(νm, νk)S
m
α Sk

β +
dim g∑
α,β=1

r
α,β

0 (νk, νk)S
k
αSk

β

⎞⎠ +
dim g∑
α=1

cβ(νk)S
k
β.

(18)

The Hamiltonian Hk
c may be interpreted as an energy of the spinning particle living at the

site k that interacts with spins living at the other sites and with the external non-homogeneous
magnetic field c(λ) with values c(νk) in the points λ = νk . In the following section, we will
consider the problem of a quantization of the obtained classical Hamiltonians and produce
several explicit examples of the generalized shift elements and generalized quantum Gaudin
models in a magnetic field.

3. Integrable quantum systems and classical r-matrices

3.1. General case

Let us consider the quantization of the classical integrable systems described in the previous
subsection. In the case of the linear Poisson bracket (6) it is achieved by the substitution of
the Lax matrix L(λ) = ∑dim g

α=1 Lα(λ)Xα with classical dynamical variables coefficients by the
operator-valued Lax matrix L̂(λ) = ∑dim g

α=1 L̂α(λ)Xα with quantum operators coefficients
acting in the corresponding Hilbert space H of quantum states, such that the following
commutation relation holds true:

[L̂1(λ), L̂2(µ)] = [r12(λ, µ), L̂1(λ)] − [r21(µ, λ), L̂2(µ)], (19)

where L̂1(λ) = L̂(λ) ⊗ 1, L̂2(µ) = 1 ⊗ L̂(µ).
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Remark 8. In the case of the skew-symmetric r-matrices r12(λ, µ) = −r21(µ, λ) bracket (19)
acquires standard Sklyanin form [22]

[L1(λ), L2(µ)] = [r12(λ, µ), L1(λ) + L2(µ)]. (20)

This Lie bracket can be obtained as a ‘quasi-classical limit’ of the FRT relation [22–24]

R12(λ, µ)T1(λ)T2(µ) = T2(µ)T1(λ)R12(λ, µ), (21)

where T (λ) = I + ηL(λ) + o(η).

Note that for the Lax operators associated with the general non-skew-symmetric r-matrices
r12(λ, µ) there is no analog of the quantum-group relations (21).

Let us pass to the problem of the construction of quantum analogs of classical integrals. It
is of possible to define generators I k(L̂(λ)) in a quantum case in the same way as in a classical
case: Î k(λ) = Ck(L̂(λ)). Nevertheless, such a naive definition may not lead to a quantum
integrable system because in a general case

[Î k(λ), Î l(µ)] �= ̂{I k(λ), I l(µ)} = 0.

This is so, because our quantization is a homomorphism from a Lie algebra of functions with
the Poisson bracket to a Lie algebra of operators only on the subalgebra of functions linear in
the basic dynamical variables L̂α(u), while Î k(λ) is polynomial in L̂α(u).

The problem of a construction of the commuting analogs of the classical generating
functions I k(λ) is very complicated (see [26]). It was solved for general classical r-matrices
only in the case g = so(3) (see [31]). For the case g = gl(n) it was solved (half-explicitly)
only for the classical r-matrix of Yang [27] (see also [28]). Nevertheless, in the following
subsection we will show by a direct calculation, that both generalized Gaudin Hamiltonians
and generalized Gaudin Hamiltonians in a magnetic field stay commutative in a quantum case
for an arbitrary classical r-matrix and an arbitrary Lie algebra g.

3.2. Case of quantum spin chains

Let Ŝi
α, α = 1, dim g, i = 1, N be linear operators in some Hilbert space that span Lie algebra

isomorphic to g⊕N with the commutation relations

[
Ŝi

α, Ŝ
j

β

] = δij

dim g∑
γ=1

C
γ

αβŜj
γ . (22)

It is evident that brackets (22) are the quantization of the Lie–Poisson brackets (14).
We will consider operators Ŝα to be the α components of the ‘generalized spin operator’.

The operators Ŝi
α could be interpreted as the α component of the generalized spin operator

living at the i-site of the generalized spin chain.
It is possible to introduce the following ‘quantum Lax operator’ [8, 17]:

L̂(λ) =
dim g∑
β=1

L̂β(λ)Xβ ≡
N∑

k=1

dim g∑
α,β=1

rα,β(νk, λ)Ŝk
αXβ. (23)

It is easy to show that it satisfies a linear r-matrix algebra

[L̂1(λ), L̂2(µ)] = [r12(λ, µ), L̂1(λ)] − [r21(µ, λ), L̂2(µ)], (24)

i.e. is, indeed, a quantization of the classical Lax operator (15).
The following theorem is proved by the long and tedious calculations using generalized

classical Yang–Baxter equations and some derived identities [17]:
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Theorem 3.1. Let r(λ, µ) be the classical r-matrix and r0(λ, µ) its regular part. Then

(i) The Hamiltonians Ĥ l = 1/2 resλ=νl
I 2(λ), where I 2(λ) = ∑dim g

α,β=1 gαβL̂α(λ)L̂β(λ) have
the following explicit form:

Ĥ l =
dim g∑
α,β=1

N∑
k �=l

rαβ(νk, νl)Ŝ
k
αŜl

β +
1

2

dim g∑
α,β=1

r
αβ

0 (νl, νl)
(
Ŝl

αŜl
β + Ŝl

β Ŝl
α

)
. (25)

(ii) The Hamiltonians Ĥ l, l ∈ 1, N form a commutative family in the universal enveloping
algebra A(g⊕N) and its representations.

Remark 9. In the case of classical matrix Lie algebras Hamiltonians Ĥ l may be written in
the more simple form

Ĥ l = 1
2 resλ=νl

tr(L̂(λ))2. (26)

Remark 10. Note that the second ‘self-action’ term in the Hamiltonian (25) is important for the
commutativity of the constructed generalized Gaudin Hamiltonians, i.e. for the integrability of
these systems. It compensates non-skew-symmetry of the general classical r-matrix, entered
into the first ‘Gaudin-like’ term in our Hamiltonian (see [17]).

Let us now analyze the equivalence among the generalized Gaudin systems. The following
proposition holds true:

Proposition 9. Let Ĥ l be generalized Gaudin Hamiltonians constructed with the help
of the classical r-matrix r(λ, µ) possessing decomposition (9). Then generalized Gaudin
Hamiltonians corresponding to the classical r-matrix rf (λ, µ) = f (µ)r(λ, µ) have the
following form:

Ĥ l
f = f (νl)Ĥ

l − 1
2f ′(νl)Ĉ

l, (27)

where Ĉl = ∑dim g

α,β=1 gαβŜl
αŜl

β are second-order Casimir operators on g⊕N ,

Proof. In order to prove the proposition, we have to construct decomposition (9) of the
r-matrix rf (λ, µ) = f (µ)r(λ, µ). For this purpose we will make substitution of the local
spectral parameters λ and µ:

λ = F(u), µ = F(v), where F ′(u) = f (F (u)).

Using the regularity property of the r-matrix r(λ, µ) we will have

f (µ)r(λ, µ) = f (µ)
	

(λ − µ)
+ f (µ)r0(λ, µ) = f (F (v))	

(F (u) − F(v))
+ f (F (v))r0(F (u), F (v))

= 	

(u − v)
+

(
f (F (v))r0(F (u), F (v)) − F ′′(v)

2(F ′(v))
	

)
+ o(u − v),

where we have used the decomposition of (F (u) − F(v))−1 in the Laurent power series
in (u − v). Using the rule of the differentiation and our definition of the function F
(F ′(u) = f (F (u))) we obtain that F ′′(v) = f ′(µ(v))f (µ(v)) (where in the left-hand side
differentiation is implied with respect to the parameter v and in the right-hand side—with
respect to the parameter µ). Using this we finally obtain that

r
f

0 (µ(v), µ(v)) ≡ f (µ(v))r0(µ(v), µ(v)) − 1
2f ′(µ)	.

Defining with the help of rf (µ(u), µ(v)) and r
f

0 (µ(v), µ(v)) the generalized Gaudin
Hamiltonians Ĥ k

f we come to formula (27). Proposition is proved. �
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Remark 11. From this proposition it follows that the generalized Gaudin systems constructed
with the help of the equivalent r-matrices r(λ, µ) and rf (λ, µ) are equivalent. In particular,
the generalized Gaudin systems constructed with the help of the r-matrices rf (λ, µ), where
r-matrix r(λ, µ) is skew-symmetric are equivalent to the ordinary Gaudin systems.

Remark 12. Note that the ordinary Gaudin Hamiltonians can be obtained using the quantum-
group technique and the above mentioned quasi-classical limit. Their commutativity may also
be proved in such a way. This is not true in the case of general non-skew-symmetric r-matrices
because, as it was mentioned above, in this general case there is no quantum-group structure.
Moreover, even in the standard case of skew-symmetric r-matrices the task of obtaining of
Gaudin systems starting from quantum groups is non-trivial [5] and it is more natural to obtain
Gaudin Hamiltonians in the classical r-matrix setting.

3.3. Case of quantum spin chains in a magnetic field

Now we are interested in obtaining of the quantum analogs of the Hamiltonians (18) that
will be the Hamiltonians of a system of N spins in a magnetic field and in showing their
commutativity. Let us consider the corresponding ‘shifted’ quantum Lax matrix

L̂c(λ) = L̂(λ) + c(λ) =
dim g∑
β=1

L̂β
c (λ)Xβ ≡

N∑
k=1

dim g∑
α,β=1

rα,β(νk, λ)Ŝk
αXβ +

dim g∑
α=1

cα(λ)Xα. (28)

(The generalized shift element c(λ) is a constant c-numbered function of λ both in classical
and quantum cases.)

The following analogue of theorem (3.1) holds true:

Theorem 3.2. Let r(λ, µ) be the classical r-matrix and r0(λ, µ) its regular part. Let the shift
element c(λ) has no poles at the points of the chain λ = νk . Then

(i) The Hamiltonians Ĥ l
c = 1

2 resλ=νl
I 2
c (λ), where I 2

c (λ) =
dim g∑
α,β=1

gαβL̂α
c (λ)L̂

β
c (λ) have the

following explicit form:

Ĥ l
c =

dim g∑
α,β=1

N∑
k �=l

rαβ(νk, νl)Ŝ
k
αŜl

β +
1

2

dim g∑
α,β=1

r
αβ

0 (νl, νl)
(
Ŝl

αŜl
β + Ŝl

β Ŝl
α

)
+

dim g∑
α=1

cα(νl)Ŝ
l
α. (29)

(ii) The Hamiltonians Ĥ l
c , l ∈ 1, N form a commutative family in the universal enveloping

algebra A(g⊕N) and its representations.

Proof. Item (i) of the theorem is checked by the direct verification. Let us prove item (ii). Due
to the fact that in general in a quantum case there is no proof of a commutativity of generating
functions I 2

c (λ) we will prove this item of the theorem directly, showing that
[
Ĥ k

c , Ĥ l
c

] = 0.
For this purpose we will use that Ĥ k

c = Ĥ k + ĥk, where Ĥ k is given by formula (25) and ĥk ≡∑dim g

α=1 cα(νl)Ŝ
l
α . We will, moreover, use for Ĥ l the following decomposition: Ĥ l = Ĥ l

0 + Ĥ l
1,

where Ĥ l
0 ≡ ∑dim g

α,β=1

∑N
k �=l r

αβ(νk, νl)Ŝ
k
αŜl

β , Ĥ l
1 = 1

2

∑dim g

α,β=1 r
αβ

0 (νl, νl)
(
Ŝl

αŜl
β + Ŝl

β Ŝl
α

)
. We

will have (k �= l):[
Ĥ k

c , Ĥ l
c

] = [
Ĥ k

0 + Ĥ k
1 + ĥk, Ĥ l

0 + Ĥ l
1 + ĥl

] = [
Ĥ k

0 , ĥl
]

+
[
ĥk, Ĥ l

0

]
,

where we have used that [Ĥ k, Ĥ l] = 0 by the virtue of theorem (3.1) and
[
Ĥ k

1 , ĥl
] =[

ĥk, Ĥ l
1

] = [ĥk, ĥl] = 0, due to the fact that k �= l and spin operators living at the different
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sites commute with each other. At last we will have[
Ĥ k

0 , ĥl
]

+
[
ĥk, Ĥ l

0

] =
dim g∑

β,γ,δ=1

N∑
m�=k

[
rγβ(νm, νk)Ŝ

m
γ Ŝk

β, cδ(νl)Ŝ
l
δ

] − [
rγβ(νm, νl)Ŝ

m
γ Ŝl

β , cδ(νk)Ŝ
k
δ

]
=

dim g∑
α,β,γ,δ=1

(
rγβ(νl, νk)c

δ(νl)C
α
γ δŜ

k
β Ŝl

α − rγβ(νk, νl)c
δ(νk)C

α
γ δŜ

l
β Ŝk

α

)
=

dim g∑
α,β,γ,δ=1

(
rγβ(νl, νk)c

δ(νl)C
α
γ δ − rγα(νk, νl)c

δ(νk)C
β

γ δ

)
Ŝl

αŜk
β = 0,

where we have used that cδ(νk) are the components of the ‘shift element’ that satisfy condition
(11). Hence

[
Ĥ k

c , Ĥ l
c

] = 0.
Theorem is proved. �

Remark 13. Let us note, that in the case of skew-symmetric classical r-matrices and ordinary
Gaudin systems in a magnetic field the corresponding Hamiltonians may be obtained using
the standard quantum-group technique. Magnetic field (shift element) in such Hamiltonians
is constructed as in remark 7.

Let us briefly comment on the equivalences among the constructed systems. From
propositions 15 and 24 follows the following corollary:

Corollary 3.1. Let Ĥ l
c be the generalized Gaudin Hamiltonians in a magnetic field constructed

with the help of the classical r-matrix r(λ, µ) and Ĉl be the second-order Casimir operators
on g⊕N . Then the generalized Gaudin Hamiltonians in magnetic field corresponding to the
classical r-matrix rf (λ, µ) = f (µ)r(λ, µ) have the form

Ĥ l
c,f = f (νl)Ĥ

l
c − 1

2f ′(νl)Ĉ
l, (30)

i.e. the generalized Gaudin systems in a magnetic field constructed with the help of the
equivalent classical r-matrix r(λ, µ) and rf (λ, µ) are equivalent.

Theorem 3.2 proves a quantum integrability of the ‘generalized Gaudin systems’ in the
external magnetic field, the form of which is determined by the ‘shift element’ c(λ). In order
to make our construction more concrete we will explicitly consider several examples.

3.4. Examples of the generalized Gaudin systems in magnetic field

3.4.1. Case of skew-symmetric r-matrices. Let us consider the case of the classical skew-
symmetric r-matrices: r12(λ, µ) = −r21(µ, λ). The corresponding Gaudin Hamiltonian in a
magnetic field acquires the more standard form

Ĥ l
c =

dim g∑
α,β=1

N∑
k �=l

rαβ(νk, νl)Ŝ
k
αŜl

β +
dim g0∑
α=1

cα(νk)Ŝ
l
α, (31)

where the shift element c(λ) satisfies the condition

[r12(λ, µ), c1(λ) + c2(µ)] = 0.

In order to find explicitly some solutions of this equations we will assume that the skew-
symmetric r-matrix possesses a symmetry with respect to some finite-dimensional Lie group
G0 ⊂ G, where G is a Lie group of the Lie algebra g, i.e.,

Adg ⊗ Adgr(λ, µ) = r(λ, µ), ∀g ∈ G0.
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In such a case, it is easy to show that

[r(λ, µ),X ⊗ 1 + 1 ⊗ X] = 0, ∀X ∈ g0,

where g0 is the Lie algebra of the Lie group G0. Hence c ≡ ∑dim g0
α=1 cαXα is the correctly

defined ‘homogeneous’ (c(νk) = c) shift element.
Let us consider two examples of the constant shift elements corresponding to two

r-matrices with a different symmetry:

Example 2. Let r12(λ, µ) = 	12
λ−µ

be the standard r-matrix of Yang. Then [r(λ, µ),X ⊗ 1 +

1 ⊗ X] = (λ − µ)−1[	12, X ⊗ 1 + 1 ⊗ X] = 0,∀X ∈ g by the very definition of the tensor
Casimir 	12. Hence any constant element of g may be taken to be the shift element. The
corresponding Gaudin Hamiltonians in a magnetic field (31) are standard ones [4, 29, 28].

Example 3. Let g be a simple Lie algebra of the rank r. Let r12(λ, µ) be the standard
trigonometric r-matrix [7]:

r(λ, µ) = µh + λh

2(λh − µh)

(
dim h∑
i=1

Hi ⊗ Hi

)
+

µh

(λh − µh)

(∑
α∈�

λl(α)µ−l(a)Eα ⊗ E−α

)
, (32)

where � is a set of roots of the Lie algebra g, l(α) is the height of root α, Eα is a basic vector of
the corresponding root space, Hi is the basis vector of the Cartan subalgebra h ≡ g0 with the
normalization: (Eα,E−α) = 1, (Hi,Hi) = 1 and h is the Coxeter number of g. A replacement
of the spectral parameters λ = eu, µ = ev reduces this r-matrix to the form depending on the
difference of spectral parameters u − v. It is easy to see that r-matrix (32) is invariant with
respect to the Cartan subgroup H. Hence the arbitrary element of the Cartan subalgebra

c =
dim h∑
i=1

ciHi

is a correct shift element for the standard trigonometric r-matrix. The corresponding Gaudin
Hamiltonians in magnetic field (31) were considered, for example, in [30].

Remark 14. The constructed shift elements for the skew-symmetric r-matrices are
independent of a spectral parameter. Below we will give an example of spectral-parameter
dependent (non-homogeneous) shift element for the case of non-skew symmetric r-matrices.

3.4.2. Case of ‘σ -twisted’ r-matrices rσ
12(λ, µ). Let us consider the case of a non-skew-

symmetric classical r-matrix r(λ, µ) obtained from a skew-symmetric one by the ‘twisting’
with the help of the some involutive automorphism σ [18]. In more details, let σ be an
involutive automorphism of g, i.e. σ 2 = 1 and σ([X, Y ]) = [σ(X), σ (Y )],∀X, Y ∈ g. We
will use the following notations: σ1 = σ ⊗ 1, σ2 = 1 ⊗ σ , etc. Let σ̃ be the lift of σ onto the
algebra of g-valued functions given by the formula: σ̃X(λ) = σX(−λ), and on the level of
their tensor product by the formula (σ̃1σ̃2)r12(λ, µ) = (σ1σ2)r12(−λ,−µ).

Let r12(λ − µ) be a skew-symmetric r-matrix which is anti-invariant with respect to the
action of the automorphism σ̃ :

(σ̃1σ2)r12(λ − µ) = −r12(λ − µ). (33)

Then, as it was shown in [18], in such a case the function

rσ
12(λ, µ) = (1 − σ̃2)r12(λ − µ) = r12(λ − µ) − σ2r12(λ + µ). (34)

is a non-skew symmetric classical r-matrix.
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In this case, it is easy to show [18] that
(
rσ

0

)
12(λ, λ) = σ2r12(2λ) and the ‘twisted’ Gaudin

Hamiltonians in the magnetic field corresponding to this r-matrix have the form

Ĥ l =
N∑

k=1,k �=l

dim g∑
α,β=1

(rαβ(νk − νl) − (σ2r)
αβ(νk + νl))Ŝ

k
αŜl

β

−
dim g∑
α,β=1

(σ2r)
αβ(2νl)Ŝ

l
αŜl

β +
dim g∑
α=1

cα(νl)Ŝ
l
α. (35)

Let us explicitly describe the shift elements c(λ) for this case. Due to the fact that
rσ

12(λ, µ) is constructed from the skew-symmetric r-matrix r12(λ−µ), the corresponding shift
elements will be also constructed from the shift elements of the skew-symmetric r-matrix.
The following proposition holds true:

Proposition 3.2. Let r12(λ − µ) be a skew-symmetric classical r-matrix anti-invariant with
respect to an automorphism σ of the second order. Let c(λ) ∈ g(λ−1, λ)) be some shift element
for r(λ − µ), i.e. [r(λ − µ), c1(λ) + c2(µ)] = 0, which is anti-invariant under the action of σ :
σ̃ (c(λ)) = σ(c(−λ)) = −c(λ). Then c(λ) is also a shift element for the r-matrix rσ

12(λ, µ):[
rσ

12(λ, µ), c1(λ)
] − [

rσ
21(µ, λ), c2(µ)

] = 0.

Proof. By direct calculation, using the fact, that in the cases of the ‘σ anti-invariant’ r-matrices
r(λ − µ) there exists the following symmetry property [18]: σ2r12(λ + µ) = σ1r21(λ + µ) we
obtain:[
rσ

12(λ, µ), c1(λ)
] − [

rσ
21(µ, λ), c2(µ)

] = [r12(λ − µ) − σ2r12(λ + µ), c1(λ)]

− [r21(µ − λ) − σ1r21(λ + µ), c2(µ)]

= [r12(λ − µ), c1(λ) + c2(µ)] − [σ̃2r12(λ − µ), c1(λ) − c2(µ)]

= (1 − σ̃2)[r12(λ − µ), c1(λ) + c2(µ)] = 0,

where we have used the skew-symmetry of the r-matrix r12(λ−µ), the fact that σ̃2c1(λ) = c1(λ)

and that by the conditions of the proposition [r12(λ−µ), c1(λ)+c2(µ)] = 0, σ̃2c2(µ) = −c2(µ)

and σ̃2 is an automorphism.
Proposition is proved. �

Example 4. Let us consider the partial case of the above proposition when σ = id. In this
case, we have that the anti-invariance condition is equivalent to the following parity condition:
r12(λ − µ) = −r12(µ − λ). The corresponding ‘twisted’ non-skew-symmetric r-matrix has
the simple form

rσ
12(λ, µ) = r12(λ − µ) − r12(λ + µ).

In this case, any odd shift element c(λ) = −c(−λ) for the skew-symmetric r-matrix r(λ − µ)

is also a shift element for the non-skew-symmetric r-matrix rσ
12(λ, µ).

Example 5. Let us consider the case of an arbitrary involutive automorphism σ , and the
constant shift elements c(λ) ≡ c. In this case for such shift elements one can take arbitrary
constant shift elements constructed in the previous subsections. In order for the element c
to be also a shift element for the r-matrix rσ (λ, µ) one has to require that σ(c) = −c. For
example, when r(λ − µ) is the classical r-matrix of Yang, c is an arbitrary element of g and
the condition σ(c) = −c is equivalent to the condition that c ∈ g1̄, where g = g0̄ + g1̄ is Z2

grading of g corresponding to the automorphism σ .
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3.4.3. Case of anisotropic non-skew-symmetric r-matrices rA(λ, µ). Let us consider the
other class of non-skew-symmetric r-matrices which will explicitly provides us an example of
‘non-homogeneous shift element’.

For this purpose we will remind the construction of ‘anisotropic’ r-matrices in the special
case g = gl(n) [8, 17, 32]. In more details, let ai, i ∈ 1, n be some complex numbers
(anisotropy parameters). Let Xij be the standard basis of gl(n) : (Xij )αβ = δiαδjβ with the
commutation relations

[Xij ,Xkl] = δkjXil − δilXkj .

It is possible to show [17, 32] that the following element of g ⊗ g,

rA(λ, µ) = 1

(λ − µ)

n∑
i,j=1

(λ − ai)

(µ − ai)
Xij ⊗ Xji, (36)

satisfies equation (2).

Remark 15. As it was shown in [32] the rational r-matrices (36) are gauge equivalent to a
very special ‘hyperelliptic’ r-matrices discovered in [8].

Direct calculation gives [17] the following expression for the ‘regular part’ rA
0 (λ, λ):

rA
0 (λ, λ) =

n∑
i,j=1

1

(λ − ai)
Xij ⊗ Xji. (37)

The corresponding generalized Gaudin Hamiltonian in a magnetic field acquires the following
explicit form:

Ĥ l =
N∑

k=1,k �=l

1

(νk − νl)

n∑
i,j=1

(νk − ai)

(νl − ai)
Ŝk

ij Ŝ
l
j i

+
1

2

n∑
i,j=1

1

(νl − ai)

(
Ŝl

ij Ŝ
l
j i + Ŝl

j i Ŝ
l
ij

)
+

n∑
i,j=1

cij (νl)Ŝ
l
ij ,

where c(νl) = ∑n
i,j=1 cij (νl)Xij is the generalized shift element and commutation relation

among the gl(n) spin operators Ŝ
p

ij , Ŝ
q

kl are standard:[
Ŝ

p

ij , Ŝ
q

kl

] = δpq
(
δkj Ŝ

p

il − δil Ŝ
p

kj

)
.

Let us explicitly write the generalized shift element for the r-matrix rA(λ, µ):

Proposition 3.3. Let rA(λ, µ) be defined by formula (36). Then the gl(n)-valued function

c(λ) = k

n∑
i=1

Xii

(λ − ai)
,

where k ∈ C, is a generalized shift element for rA(λ, µ).

Proof. The proposition is proved by direct verification. Indeed, let us show that matrix
c(λ) = ∑n

i=1
Xii

(ai−λ)
satisfies differential equation (12). We have

[	12, ∂lc2(λ)] = −
⎡⎣ n∑

i,j=1

Xij ⊗ Xji,

n∑
k=1

1 ⊗ Xkk

(λ − ak)2

⎤⎦ =
n∑

i,k=1

Xik ⊗ Xki

(λ − ak)2
−

n∑
j,k=1

Xkj ⊗ Xjk

(λ − ak)2
,
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[(
rA

0

)
12, c1(λ)

] =
⎡⎣ n∑

i,j=1

Xij ⊗ Xji

(λ − ai)
,

n∑
k=1

Xkk ⊗ 1

(λ − ak)

⎤⎦
=

n∑
i,j=1

Xij ⊗ Xji

(λ − ai)(λ − aj )
−

n∑
j,k=1

Xkj ⊗ Xjk

(λ − ak)2
,

[(
rA

0

)
21, c2(λ)

] =
⎡⎣ n∑

i,j=1

Xij ⊗ Xji

(λ − aj )
,

n∑
k=1

1 ⊗ Xkk

(λ − ak)

⎤⎦
=

n∑
i,j=1

Xij ⊗ Xji

(λ − ai)(λ − aj )
−

n∑
i,k=1

Xik ⊗ Xki

(λ − ak)2
.

Hence, we obtain that [	12, ∂lc2(λ)] = [(
rA

0

)
12, c1(λ)

] − [(
rA

0

)
21, c2(λ)

]
, i.e. differential

equation (12) is satisfied for the above matrix c(λ) and any matrix proportional to it.
Proposition is proved. �

4. Conclusion and discussion

In the present paper, we have constructed integrable generalizations (both classical and
quantum) of the Gaudin Hamiltonians in an external magnetic field that correspond to general
(non-skew-symmetric) classical r-matrices. The role of the magnetic field is played in our
case by the generalized ‘shift element’ from the generalized ‘shift of the argument method’.
We have constructed several examples of such ‘shift elements’ for several classes of classical
r-matrices. The important feature of our systems is that the external magnetic field is, generally
speaking, non-homogeneous.

The interesting open problem is a description of ‘magnetic fields’—all possible shift
elements for the different skew-symmetric [7] and non-skew-symmetric [8, 17, 18, 32] classical
r-matrices. Another interesting and important, from the physical point of view, problem is a
simultaneous diagonalization of the constructed quantum Hamiltonians. The work over these
problems is now in progress and some results will soon be published [33].
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